Information Selection
This extension includes a set of operators for information selection form the training set for classification and regression problems. These are operators for instance selection (example set selection), instance construction (creation of new examples that represent a set of other instances), clustering, LVQ neural networks, dimensionality reduction, and other. These operators can be used for outlier elimination and training set compression.
Information Selection Extension includes:
Instance selection algorithms such as:
- CNN - Condensed Nearest Neighbor Rule
- ENN - Edited Nearest Neighbor Rule
- RENN - Repeated Edited Nearest Neighbor Rule
- All k-NN
- RNG - Relative Neighbor Graph
- GE - Gabriel Editing
- ELH - Encoding Length Heuristic
- RMHC – Random Mutation Hill Climbing
- IB2
- IB3
- Random Selection
- Weka Drop1-5
- Weka ICF
- Some other Instance Selection algorithms from Weka
Ensemble Instance Selection algorithms such as:
- Ensemble Instance Selection by Bagging
- Ensemble Instance Selection by Voting
- Ensemble Instance Selection by Feature Subset
- Ensemble Instance Selection additional Noise
Generalized Instance Selection
- Generalized ENN
- Generalized CNN
Competitive based Neural Networks such as:
- LVQ1
- LVQ2
- LVQ2.1
- LVQ3
- OLVQ
- Weighted LVQ
- SNG – Supervised Neural Gas
- Winer Takes Most LVQ
- Generalized LVQ
Clustering algorithms such as:
- Fuzzy c-means
- Vector Quantization
- Conditional Fuzzy c-Means
Feature set reduction algorithms
- MDS Multidimensional Scaling (use external library: Creative Commons License) - this operator is switched off because of incompatible licenses
- Feature Selection based on Infosel++ Package (requires external c++ library)
Performance metrics for:
- Instance selection
- Clustering
Some other useful operators
Product Details
Version | 7.0.0 |
File size | 443 kB |
Downloads | 30916 (27 Today) |
Vendor | Marcin Blachnik |
Category | Machine Learning |
Released | 4/27/16 |
Last Update | 4/27/16 12:00 PM |
License | AGPL |
Product web site | http://prules.org |
Rating | (0)
|
Comments
Hi. How I Can Use Weka Drop 1-5 in rapidminer?